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Abstract-The problem of stability of shallow, two-pinned, sinusoidal arches subjected to a randomly varying
symmetrically distributed lateral loading is investigated. Though the deformation ofthe arch is initially symmetric,
buckling is initiated when an antisymmetric mode is picked up at a certain critical value of the loading. Based on an
analysis previously developed by the authors for asymmetric snap-buckling cases applicable to shell problems,
analytical expressions are derived for calculating the probability of first snapping of the arch in a specified time
interval from an initial stable equilibrium state. Numerical results for a particular example of an arch specimen
are presented and discussed.

INTRODUCTION

SNAP-THROUGH and snap-buckling types ofinstabilities ofslender shallow arches have been
extensively investigated in recent years. Such phenomena involve the structure leaving an
initial stable equilibrium configuration for another nonadjacent stable equilibrium state
undergoing large displacements and are characterized by a finite jump over a potential
energy barrier at certain critical loading conditions. When the loading is time-dependent,
the behaviour ofthe arch is analogous to the "jump phenomenon" in the theory ofnonlinear
vibrations and has been investigated by Mettler [1], Hoffand Bruce [2], Lock [3], Humphreys
[4], Hsu [5, 6], etc., all of whom considered different shapes of arches under different types
ofdeterministic lateral loads. Corresponding studies of the problem when the loading varies
randomly have been very few.

If the initial central rise of the arch is small, the deformation is entirely in a single,
symmetric mode when subjected to a symmetrically distributed dynamic load and the
arch loses its stability by what is known as a symmetric snap-through. Here, the analysis
essentially involves a discussion of the motion ofan equivalent point mass on the potential
energy surface which has a single maximum corresponding to an unstable equilibrium
configuration of the arch. In a previous paper, the present authors [7] considered a similar
problem when the loading is stochastic and derived the probability of first snap-through
of the arch in a specified time. Their approach involved the determination of the rate of
diffusion of the probability density across the potential hump in the direction of the
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symmetric mode in the phase plane and was based, in part, on a theory proposed by
Kramers [8] in his paper on the kinetics of chemical reactions. When the initial central
height of the arch exceeds a certain limiting value, along with the fundamental symmetric
mode of deformation, the next antisymmetric mode is also excited at the onset of buckling
even though the loading is symmetrical. Such an instability may be termed as "snap­
buckling" to distinguish it from the symmetric snap-through case mentioned above.
Here, an unstable equilibrium state of the arch is represented by a saddle point on the
potential energy surface and the motion of the system under small dynamic disturbances
will follow a path for which the slope of descent is everywhere a maximum. The authors [9]
have presented a general treatment ofsuch snap-buckling problems for shell-type structures
subjected to random loading. Their analysis technique involves the estimation of a slow
diffusion rate of the probability density along the above-mentioned path of steepest descent
which also coincides with one of the principal curvature directions of the potential energy
surface.

The problem of asymmetric dynamic instability of shallow arches that is considered in
the present paper is an extension of the analysis given in the previous paper [9] by the
authors. In order to make this presentation reasonably self-explanatory, some important
ideas of the theory in the earlier paper [9] are explained within the context of the present
problem. For simplicity, both the shape of the arch and the lateral load distribution are
assumed to be sinusoidal and only the fundamental symmetric mode and the fundamental
antisymmetric mode of deformations are considered.

FORMULATION OF THE PROBLEM

Consider a shallow, two-pinned, sinusoidal arch rib whose initial central rise Wo is
chosen such that, along with a symmetric deformation, an antisymmetric deformation is
also excited under the action of the given loads. With the coordinate axes as indicated in
Fig. 1, the undeformed shape of the centreline of the arch is given by

wo(x) = Yo sin(
1tt), (1)

where 1is the span. Let the arch be initially in a stable equilibrium configuration under a
symmetrically distributed deterministic load of intensity W sin(1tx/l). At time t = 0, let the
arch be subjected to a random load of intensity f(t) sin(1tx/l) having a zero mean value.
Because of the assumption that the arch has two degrees of freedom, the deformed shape of
the centreline of the rib at any instant will be given by

WI(x, t) = ntl Yn(t) sin(n~x).
The deflection of the crown is then

qi = YO-YI(t),

and at any other arbitrary point the deformation as measured from the crown is

w(x, t) = wO(X)-WI(X, t),

. (1tX) . (21tX)= q I sm T - q2 sm -1- . (2)
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FIG. 1. Geometry of the arch.

Taking the coefficient of viscous damping Po to be the same in both ql and q2 modes
of deformation, the equations of motion of the arch may be written using Lagrange's
equations

(3)

where the index i takes the values 1 and 2, T is the kinetic energy of the system, D the
dissipation function, V the potential energy and Qi the generalized forces corresponding to
the applied loading on the arch. The quantities T, D and Qi are evaluated as follows

T = !ml(qi +q~),

D = iPol(qi +q~),

Ql = ilf(t), Q2 = 0,

where m is the mass of the arch per unit length. The potential energy V of the arch is deter­
mined from the strain energy v,. due to axial shortening, the strain energy J'/, due to bending
and the work done Vw by the external dead load W sin(nxjl). That is

V(ql,q2'A.) = v,,+J'/,-Vw

Kl { 1 2]2= 8r2 b'Ql(2Yo-ql)-2q2

+ 2r2qi +32Q~ - 8A.r3qI} +const., (4)

where r is the radius ofgyration of the section ofthe arch, A the area ofcross section, E the
Young's modulus, K = EAn4r2jl4 and the dead load parameter A. = W14j2n4EAr3

.

Substitution of the above expressions in equation (3) yields the following equations of
motion

.. p' BV ]:()Ql + ql +-;- = .. t,
uQl

.. p' BV 0q2+ q2+-;- = ,
uq2

(5)
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P = Po and ~(t) = ~f(t).
m m

(6)

(7)

The equilibrium configurations ofthe arch for any given value ofthe static load parameter
Aare given by

and on using expressions (6) and (7), these equilibrium equations become

qi - 3YoqI +ql(2y~ +4r2)+4qlq~ -4Yoq~ -8Ar3 = 0, (8)

qIq2-2Yoqlq2+16r2q2+q~ = O. (9)

The roots of these equations describe the load~efiection characteristics of the arch as
shown in Fig. 2. Let Amax and Amin be the upper and lower static buckling loads of the arch.
Then, for any value of Asatisfying the inequality Amin < A< Amax , it may be seen that there
exist four equilibrium configurations for the arch corresponding to the points A, B, Bland
C in Fig. 2. The contours ofequal potential energy values are indicated in Fig. 3, where the
equilibrium states of the structure for any A may be seen to be located at the bottom of
"depressions", the top of "hills" and at "saddle points". The initial stable state A and the
final buckled state C of the arch are associated with the symmetric deformation mode q1

only and are located at the bottom of the valleys since they are associated with a minimum
of the potential energy. The unstable equilibrium configuration B1 is also associated only
with the symmetric deformation ql (with q2 = 0) describing symmetric snap-through type
of problems [7] and is located at the top of a hill to represent a maximum of the potential
energy. The other unstable equilibrium configuration B ofthe structure, which is of interest

c
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FIG. 2. Load~eftection curves for the arch.
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FIG. 3. Contours of equal potential energy.

in this paper, is associated with both symmetric and antisymmetric deformations and hence
is located at a saddle point on the potential energy surface. The equilibrium configurations
corresponding to A(ql = qlA,q2 = 0) and C(ql = qlC,q2 = 0) are given by the roots of
the equation (8) after setting q2 = 0 and that ofB(ql = Q1B, Q2 = q2B) is given by a solution
satisfying both the equations (8) and (9).

When the stochastic load ~(t) is applied, the dynamic state of the arch at any subsequent
time will be described by the phase variables (Ql, Q2, til' ti2). For different members of the
loading ~(t), there will be an ensemble of random trajectories of the phase point starting
from the initial stable equilibrium state A. After a specified time T, some ofthese trajectories
may have remained entirely within the neighbourhood of A while some others may have
surmounted the potential barrier and crossed over to the buckled state C. Since the potential
energy level at B l is higher than that at B, it may be expected that the phase trajectories
crossing over to C will be concentrated in the vicinity of the equilibrium point B. The
problem is to determine the probability PT that in a time interval T the arch would have
snapped and be found in the neighbourhood ofC. Ifthe rate offluxjB ofthe phase trajectories
across a certain boundary perpendicular to their paths in the neighbourhood of B can be
determined [9], then the probability PT will be given by the number of phase trajectories
crossing over to C in a time T divided by the number nA of the trajectories that were
originally in the neighbourhood of the initial stable state ~. Explicitly stated,

P
T

=jBT. (10)
nA

The calculation of the flux rate jB and the quantity nA requires an exact solution of the
stochastic differential equation governing the response probability density satisfying the
intitial condition that the arch is in a stable equilibrium A at t = O.

FOKKER-PLANCK EQUATIONS

Given an arbitrary random process ~(t), the equation governing the response probability
is not known. However, if ~(t) is a stationary, wide-band random excitation with a delta
correlation, the response process can be approximated by a Markov processand the Fokker­
Planck equation can be used.
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(11)

Writing the equations of motion (5) as a set of state equations, the Fokker-Planck
equation giving the probability of response can be derived to be

op oV op . op oV op . op
at = OqI Oql -qloq1 +OQ2 OQ2 -Q20qz

o (. D op) O.
+f3

0Q1
qlP+1i OQl +f3

84z
(qzp),

where

<WdWz) = 2Dc5(t 1 -tz),
the angular brackets denoting the ensemble average and D the intensity coefficient.
Since the arch is in equilibrium in the configuration (Ql = Q1A, qz = 0) at time t = 0,
any solution of equation (11) must satisfy the condition

(12)

The exact solution of equation (11) satisfying the initial condition (12) is not known.
However, ifthe energy supplied by the random forces is taken to be small compared to the
height of the potential barrier, the equation (11) can be approximately solved. Explicitly
stated, this condition is

DIi « h, where h = V(qlB' QZB)- V(Q1A' 0). (13)

(14)

Such an assumption will result in a motion of the phase trajectories, starting from the point
A, that is slow and almost stationary as explained in a previous paper by the authors [7].
Consequently, the relation time t for the probability flow in the phase space representing
the motion ofthe phase trajectories will be large. Further, if T« t, the direction of this drift
near the region B will be principally towards C and the probability ofsnapping Prevaluated
will then represent the probability that the arch snaps for the first time. Therefore, the
probability density valid in the neighbourhood of any point in the phase space will be that
corresponding to the stationary solution of the Fokker-Planck equation (11) with the
potential function V appropriate to the neighbourhood of that point. Thus, the probability
density in the neighbourhood of A will be the stationary solution of the equation (11) with
the antisymmetric deformation qz = 0 and is given by

PA = (XA exp {-t[t4i+1(Vll)A(Q 1 - QIA)Z - h]} .
Here, (XA is a normalizing constant and (VU)A is the first non-vanishing term d2 V/dqi in
the expansion of V(q l' qz, A) evaluated at the equilibrium point A. The datum for the
potential function is chosen such that V = 0 at the point B. The solution (14) is to be used to
calculate nA in the formula (10).

Consider those phase trajectories that have succeeded in surmounting the potential
barrier at the saddle point B under the shuttling action of the random force ~(t). The pro­
jection of these trajectories on the qCq2 plane will be nearly parallel, around the point B,
to the projection of the line of downward curvature of the potential energy surface at B.
Let s1 and s2 denote the principal curvature coordinates of the potential energy surface and



Instability of stochastically loaded shallow arches in nonsymmetric modes 1311

let St correspond to the direction of downward curvature at the point B as indicated in
Fig. 3. The transformation law relating the s-system and the original q-system ofcoordinates
is

qt = St cos 0+S2 sin 0,

q2 = -St sin 0+S2 cos 0,
(15)

where 0 is the angle of transformation. Let v* be the potential energy of the arch in terms
of the new variabless t and S2' V*(St, S2' A) can be obtained from V(ql' qz, A) using equations
(15). An advantage of representing the potential function by V*(St, Sz, A) is that, in the
expansion, the variations of V* occur uniquely with respect to each St and Sz direction and
the cross differential terms oZV*/OSjOSj vanish for i '1= j, whereas this is not true if the
potential energy is written in terms of the original q-system ofcoordinates. Consequently, a
solution of the Fokker-Planck equation valid near the point B is made possible. Since the
cluster of random phase trajectories near the point B will be essentially directed along the
principal St-direction towards the point C, the probability of snapping of the arch can be
determined from the expression (10) where jB now represents the rate of flux ofthe phase
points across the surface St = StB in the phase space. This can be evaluated from a solution
of the Fokker-Planck equation that is reformulated in terms of the s-coordinate system.

The equations ofmotion of the arch (5) as referred to the principal St and Sz coordinates
are

oV*
8t + PSt+~ = ((t) cos 0,

uSt

.. P' av* ;;(). IIsz+ S2 +-~- = .. t SIO u.
US2

(16)

The corresponding Fokker-Planck equations governing the marginal probability densities
Pt(St, St) and Pz{S2' sz) valid in the neighbourhood of the saddle point Bare

(17)

(18)

where

The flux rate jB across the surface St = StB may then be obtained from the locally
stationary probability density Pt(St, 8t) satisfying the equation (17). That is,

(19)

and this may be used in the expression (10) to evaluate the probability distribution Pr ·
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PROBABILITY OF SNAP-BUCKLING

Following the calculation procedure explained in the authors' previous paper [9],
the quantitiesjB and nA may be determined and the probability of first snap-buckling ofthe
arch may be found as

(20)

(22)

Here (VI dA is the quantity d2V/dqr evaluated at q1 = q lA and (VIl)B is the quantity
a2v*/asr evaluated at the saddle point B where SI = SIB and S2 = S2B' These quantities
may be calculated from the potential energy expression (4). Introducing the nondimensional
parameters (I = qt!2r, (2 = q2/2r and a = yo/2r, the expression (4) becomes

V((I' (2' A) = 2Kr21[(a(1 -!-(r -2(W +!-n +8(~ -A(I]+const. (21)

On setting aV/a(1 = 0 and aV/a(2 = 0, the equilibrium positions (A' (B and (c of the
arch are given by the roots of the following equations

(i-3a(t+(2a2+4n+l)(I-4a(~+A= 0,

4n+((t-2a(1 +4)(2 = O.

For the stable equilibrium configurations A and C ofthe arch (see Fig. 2), the antisymmetric
deformation (2 = 0 and on using the first of the equations (22)

(a
2 -1)! (n-t/!)

(IA = a-2 -3- cos -3- ,

_ (rx2
-1)! t/!

~IC = a+2 -3- cos3'

where t/! is the smallest positive angle satisfying

(rx-A) (a2 -l)-tcost/! = -- ---2 3 .

(23)

The unstable equilibrium configuration B is given by a solution satisfying both the equations
in (22) and is found as

(IB = !(4a - A),

(2B = !-(2a(IB-(tB-4)!.
(24)

If the quantities given in equations (23) and (24) are to be real and distinct, the mean load A
must be such that

(25)

The expression (21) for the potential function must be multiplied by a factor 2/ml when it is
to be used in the equations of motion given in the form of equations (5). That is,

V((I'(2,A) = 4OJrr2[(a(l-tn-2(W+tn+8(~-A(IJ+const., (26)

where OJ1 is the natural frequency of the arch for a zero initial curvature in its fundamental
mode (I after setting (2 = 0 and is given by the quantity (K/m)!.
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The quantities (Vll)A and (V!I)B to be used in the formula (20) may now be calculated
from expressions (23), (24) and (26).

d2 V
(Vll)A = dn evaluated at (I = (IA and (2 = 0,

= WI(3(IA - 61X( lA + 21X2+ 1).

j}2V*
(Vtl)B = 0(*1 evaluated at the point n = (tB

d r* r* h r* Sian '>2 = '>2B were '>i = 2,

The latter quantity can be computed using a Mohr's circle transformation corresponding
to equations (lS). That is

(VtdB = (Vll)B~(V22)B t{[(Vll)B-(V22)B]2 +4(Vn)Mt, (28)

where (Vll)B, (V22)B and (Vn)B are the quantities 02V/on, 02V/on and 02V/O(10(2
evaluated at the point (I = (IB and (2 = (2B' On using expressions (24) and (26) in (28),
(Vt dB may be written in the form

(29)

(30)

where

L = -3(IB+61X(IB+1X2-17·S,

M = SnB-101X(IB+1X2+14·S,

and

N = 4[ -(tB+4IXnB+(SIX2-4KIB+(21X3 +8IXKIB-41X2J!-.
Substituting expressions (27) and (29) in the formula (20), the probability of first snapping
of the arch in a time interval Tis

T i9[3(IA-61X(lA+21X2+1Jt
Pr = 2n cos -L+(M2 +N2)t

[{P: -[L-(M2 +N2 )t]WI} t -~J exp( -~),

where 9 is the angle of transformation given in equations (lS) and can be obtained from the
relation

29 2(Vn)B N
tan = (VI dB - (V

22
)B = M'

which corresponds to the Mohr's circle transformation indicated in expression (28).
The height h of the potential barrier is

h = V((lB, (2B)- V((lA, 0)

= 4wIr2{4(1X(IB- 1)-t(IB-(IA(t+1X --!(IA)- A((IB-(IA)-4}. (31)
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Introducing a non-dimensional damping coefficient y and writing (3 = 2yw1 , the expression
for PT takes the form

p = Tcos
2e[3(L -6a(lA +2a

2 + IJ+
T 'I -L+(M2+N2 )!

{[y2_L+(M2+N2)!]+-y}exp( _2Y~lh) (32)

where '1 is the period for the fundamental oscillation WI'

NUMERICAL RESULTS AND CONCLUSIONS

To illustrate the application of the formula (32), a model arch made of aluminum and
having a span of 24 in. and a cross-section t in. depth x 1 in. width is considered. The
natural frequency WI of the model arch for zero curvature and in the symmetric (I mode is
evaluated to be 400 rad./sec. The intensity coefficient 2D of the stochastic load on the arch
is taken as 8wfr2 units to be in agreement with the assumption (13) made in the analysis.
The probability of first snap-buckling is calculated for different values of the mean load A
that satisfy the condition Amin < A < Amax where Amin and Amax are the minimum and
maximum static critical loads ofthe arch specimen. The time Tfor the snapping is taken to be
48 cycles of the oscillation WI or 48 r 1 seconds, r 1 being the period of WI'

Figure 4 presents the plot of the logarithm of the probability distribution PT against the
load ratio AIAmax for different values of the damping factor y/Ye' where Ye is the critical
damping in the (1 mode. It may be noticed that the probability of snapping is highly
sensitive to changes in the mean load A and the damping factor y/Ye' For example, when
y/Ye = 0·60, a 6·5 per cent decrease in the ratio AIAmax from a value of 0·80 decreases the
probability from 0·60 to 0·07. Similarly, when AIAmax = 0·80, a 25 per cent decrease in the
damping factor yIye from a value of 0·8 increases the probability of snapping from 0·11 to
0·60. Such large variations may be attributed to the presence of the term exponential
(-2YWlhID) in the formula (32). Here, a small variation in A causes a large change in the
height h of the potential barrier and thereby influences a considerable change in the
magnitude of the ratio hl(D/2ywd satisfying the assumption (13). The influence of the

).,/).,max
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initial curvature Qt on the probability ofsnapping is described by the graphs shown in Fig. 5.
As expected, it may be seen that, for the same value of the ratio A./Amax , the probability PT

decreases for an increase in the initial height Qt.

The results presented in this paper are applicable to shallow arches that buckle under
symmetric and antisymmetric modes of deformation. It is known from static analyses [10J
of shallow arches that for such asymmetric snapping to occur the value of the initial
curvature parameter Qt must be greater than (5·5)t and therefore the investigation presented
here may be taken to be valid in that range of Qt. For values of Qt less than (5·5)!, the arch
exhibits only a symmetric mode ofdeformation and the antisymmetric mode is completely
absent. The behaviour of such arches subjected to stochastic loads has been presented in a
previous paper [7J and can also be treated as a special case of the results presented in this
paper. In such cases, on substituting the asymmetric deformation '2 = 0, the formula (32)
for the probability reduces to the one obtained by the authors [7J previously.

It has been often reported that arches and shell structures of its kind, when experi­
mentally tested, always exhibit lower snapping loads than those predicted by the classical
theory. The results presented in this paper partly provide an answer to such discrepancies
because, besides geometrical imperfections, it may be the small random disturbances
(over and above the measured mean static load) caused by the testing machine that have
taken the specimen to an eventual snapping. The investigation presented has also an
application in the design of structural components of aerospace vehicles, especially in the
determination oftheir reliability against the random aerodynamic forces that are experienced
over the dead loads already carried.
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A6cTpaKT-HCCJlellyeTcli '3alla'la YCTOit'IHBOCTH nOJIOrHX, 3aWeMJIeHHblX, CHHYCOHllaJIbHbIX apoK,

nOllBeplKeHHblx lleitcTBHIO 6e'3nopllllO'lHO nepeMeHHoit, CHMCTpH'ICCKH paCnOJIOlKeHHoit, ropH30HTaJIbHoit

Harpy'3KH. HCCMOTpli Ha TO, 'ITO lIeljlopMauHlI apKH CHa'iana CHMMeTPH'ICCKa, BbI!1Y'IHBIUIHe Ha'lHHaeTClI,

KorlIa aHTHcHMMeTpH'ICCKHH BHlI BbmY'lHBaHHlI nOliMlieTCli npH HeKOTopoM KpHTH'ICCKOM 3Ha'leHHIO

HarPY3KH.

Ha OCHOse aHaJIH'3a, BblBelIeHHOro pailbwe aBTopaMH lInli cny'laeB aHTHCHMMeTpH'ICCKOrO BHe3anHoro

Bbiny'lHBaHHlI, npHMeHlIeMoro llnll 3alla'lH 060JIO'lKH, onpelleJIlilOTCli aHaJIHTH'ICCKHe IjIoPMYJIbllIJIli paC'IeTa

BepOliTHOCTH nepaoro npowenKHBaHHlI, B cneuHIjIH'ICCKOM HHTepBaJIe BpeMeHH, OT Ha'laJlbHOrO yCTOH'IH­

BOro COCTOllHHII paBHOBecHIi. }lalOTcli H o6cYlKllalOTCli '1HCJleHHble pe3ynbTaTbi lInli '1aCTHOro npHMepa

06pa3ua apKH.


