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Abstract—The problem of stability of shallow, two-pinned, sinusoidal arches subjected to a randomly varying
symmetrically distributed lateral loading is investigated. Though the deformation of the arch is initially symmetric,
buckling is initiated when an antisymmetric mode is picked up at a certain critical value of the loading. Based on an
analysis previously developed by the authors for asymmetric snap-buckling cases applicable to shell problems,
analytical expressions are derived for calculating the probability of first snapping of the arch in a specified time
interval from an initial stable equilibrium state. Numerical results for a particular example of an arch specimen
are presented and discussed.

INTRODUCTION

SNAP-THROUGH and snap-buckling types of instabilities of slender shallow arches have been
extensively investigated in recent years. Such phenomena involve the structure leaving an
initial stable equilibrium configuration for another nonadjacent stable equilibrium state
undergoing large displacements and are characterized by a finite jump over a potential
energy barrier at certain critical loading conditions. When the loading is time-dependent,
the behaviour of the arch is analogous to the “‘jump phenomenon” in the theory of nonlinear
vibrations and has been investigated by Mettler [1], Hoff and Bruce[2], Lock [3], Humphreys
(4], Hsu [5, 6], etc., all of whom considered different shapes of arches under different types
of deterministic lateral loads. Corresponding studies of the problem when the loading varies
randomly have been very few.

If the initial central rise of the arch is small, the deformation is entirely in a single,
symmetric mode when subjected to a symmetrically distributed dynamic load and the
arch loses its stability by what is known as a symmetric snap-through. Here, the analysis
essentially involves a discussion of the motion of an equivalent point mass on the potential
energy surface which has a single maximum corresponding to an unstable equilibrium
configuration of the arch. In a previous paper, the present authors [7] considered a similar
problem when the loading is stochastic and derived the probability of first snap-through
of the arch in a specified time. Their approach involved the determination of the rate of
diffusion of the probability density across the potential hump in the direction of the
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symmetric mode in the phase plane and was based, in part, on a theory proposed by
Kramers [8] in his paper on the kinetics of chemical reactions. When the initial central
height of the arch exceeds a certain limiting value, along with the fundamental symmetric
mode of deformation, the next antisymmetric mode is also excited at the onset of buckling
even though the loading is symmetrical. Such an instability may be termed as “snap-
buckling” to distinguish it from the symmetric snap-through case mentioned above.
Here, an unstable equilibrium state of the arch is represented by a saddle point on the
potential energy surface and the motion of the system under small dynamic disturbances
will follow a path for which the slope of descent is everywhere a maximum. The authors [9]
have presented a general treatment of such snap-buckling problems for shell-type structures
subjected to random loading. Their analysis technique involves the estimation of a slow
diffusion rate of the probability density along the above-mentioned path of steepest descent
which also coincides with one of the principal curvature directions of the potential energy
surface.

The problem of asymmetric dynamic instability of shallow arches that is considered in
the present paper is an extension of the analysis given in the previous paper [9] by the
authors. In order to make this presentation reasonably self-explanatory, some important
ideas of the theory in the earlier paper [9] are explained within the context of the present
problem. For simplicity, both the shape of the arch and the lateral load distribution are
assumed to be sinusoidal and only the fundamental symmetric mode and the fundamental
antisymmetric mode of deformations are considered.

FORMULATION OF THE PROBLEM

Consider a shallow, two-pinned, sinusoidal arch rib whose initial central rise w, is
chosen such that, along with a symmetric deformation, an antisymmetric deformation is
also excited under the action of the given loads. With the coordinate axes as indicated in
Fig. 1, the undeformed shape of the centreline of the arch is given by

X
T)’ (1)

where [ is the span. Let the arch be initially in a stable equilibrium configuration under a
symmetrically distributed deterministic load of intensity W sin(nx/l). At time t = 0, let the
arch be subjected to a random load of intensity f(¢) sin(nx/l) having a zero mean value.
Because of the assumption that the arch has two degrees of freedom, the deformed shape of
the centreline of the rib at any instant will be given by

wo(X) = yo sin

2 . X
Wi = 3 pt) sm(% .
n=1
The deflection of the crown is then
q = yO_yl(t)’
and at any other arbitrary point the deformation as measured from the crown is

W(x, t) = WO(x) —Wl(xs t)9

. [nx . [27x
=q, s1n(T) —q» sm(-l—). 2)
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FiG. 1. Geometry of the arch.

Taking the coefficient of viscous damping f§, to be the same in both ¢, and g, modes
of deformation, the equations of motion of the arch may be written using Lagrange’s
equations

d[oTy oD oT oV
i) 5 o= % ©

where the index i takes the values 1 and 2, T is the kinetic energy of the system, D the
dissipation function, V the potential energy and Q, the generalized forces corresponding to
the applied loading on the arch. The quantities 7, D and Q; are evaluated as follows

T = jml(g3 +3),
D = {4t +4d3),
0, =if),Q,=0,
where m is the mass of the arch per unit length. The potential energy V of the arch is deter-

mined from the strain energy V, due to axial shortening, the strain energy ¥, due to bending
and the work done ¥V, by the external dead load W sin(nx/l). That is

V(ql’qls/l) = Va+Vb—Vw

Kl
= p{[%‘h(z}’o ~4qy) —2‘1512
+2r2q% + 3295 —84r3q,} +const., @)

where r is the radius of gyration of the section of the arch, A the area of cross section, E the
Young’s modulus, K = EAn*r?/I* and the dead load parameter A = WI*/2n*EAr>.
Substitution of the above expressions in equation (3) yields the following equations of
motion

av
i+ Bd, e = C t),
q ﬂql aql ()

)

av
i, + B4, +— = 0,
42+84; o
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where
vV K
— = ———{q3 —3yoq} + 4125 +4r*)+ 49,93 — 4yeq5 — 84r*], (6)
0q, 4r'm
vV —K
— = (419, —2y04:142 + 16r’q, + q3), )
dq, r‘m
1
g =Poand ey = Ly
m m

The equilibrium configurations of the arch for any given value of the staticload parameter
A are given by

W, W
dq,

and on using expressions (6) and (7), these equilibrium equations become
a1 —3Yodi +4:1(2y5 +41?)+ 44,95 —4yoq} —84r* = 0, ®)
4192 —2Yoq192 +16r’q; +43 = 0. )

The roots of these equations describe the load—-deflection characteristics of the arch as
shown in Fig. 2. Let 4 _,, and 4., be the upper and lower static buckling loads of the arch.
Then, for any value of /1 satisfying the inequality 4., < A < A,,,, it may be seen that there
exist four equilibrium configurations for the arch corresponding to the points 4, B, B, and
C in Fig. 2. The contours of equal potential energy values are indicated in Fig. 3, where the
equilibrium states of the structure for any A may be seen to be located at the bottom of
“depressions”, the top of “‘hills” and at “saddle points”. The initial stable state 4 and the
final buckled state C of the arch are associated with the symmetric deformation mode ¢,
only and are located at the bottom of the valleys since they are associated with a minimum
of the potential energy. The unstable equilibrium configuration B, is also associated only
with the symmetric deformation g, (with g, = 0) describing symmetric snap-through type
of problems [7] and is located at the top of a hill to represent a maximum of the potential
energy. The other unstable equilibrium configuration B of the structure, which is of interest

LOAD
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F1G. 2. Load—deflection curves for the arch.
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FIG. 3. Contours of equal potential energy.

in this paper, is associated with both symmetric and antisymmetric deformations and hence
is located at a saddle point on the potential energy surface. The equilibrium configurations
corresponding to A(q, = q,4,42 = 0) and C(q; = q,¢, g, = 0) are given by the roots of
the equation (8) after setting ¢, = 0 and that of B(q, = ¢,5,9, = ¢2p)is given by a solution
satisfying both the equations (8) and (9).

When the stochastic load (t) is applied, the dynamic state of the arch at any subsequent
time will be described by the phase variables (q,, ¢,, 4, §,). For different members of the
loading &(t), there will be an ensemble of random trajectories of the phase point starting
from the initial stable equilibrium state A. After a specified time T, some of these trajectories
may have remained entirely within the neighbourhood of A while some others may have
surmounted the potential barrier and crossed over to the buckled state C. Since the potential
energy level at B, is higher than that at B, it may be expected that the phase trajectories
crossing over to C will be concentrated in the vicinity of the equilibrium point B. The
problem is to determine the probability P that in a time interval T the arch would have
snapped and be found in the neighbourhood of C. If the rate of flux j of the phase trajectories
across a certain boundary perpendicular to their paths in the neighbourhood of B can be
determined [9], then the probability P, will be given by the number of phase trajectories
crossing over to C in a time T divided by the number n, of the trajectories that were
originally in the neighbourhood of the initial stable state 4. Explicitly stated,

_ T

Pr
n,

(10)
The calculation of the flux rate j; and the quantity n, requires an exact solution of the
stochastic differential equation governing the response probability density satisfying the
intitial condition that the arch is in a stable equilibrium 4 at ¢t = 0.

FOKKER-PLANCK EQUATIONS

Given an arbitrary random process £(t), the equation governing the response probability
is not known. However, if &(¢) is a stationary, wide-band random excitation with a delta
correlation, the response process can be approximated by aMarkov processand the Fokker—
Planck equation can be used.
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Writing the equations of motion (5) as a set of state equations, the Fokker-Planck
equation giving the probability of response can be derived to be
op 0V6p . Op 6V6p .6p

+
ot a‘h 5‘11 4116 oq, a‘12 5‘12

D 8
+ﬁaq (q1p+ﬂ a;)ﬂf (42p), (11)

where
C&(t1)E(E2)> = 2Do(t, —ty),

the angular brackets denoting the ensemble average and D the intensity coefficient.
Since the arch is in equilibrium in the configuration (g, = ¢,4, ¢, = 0) at time ¢t = 0,
any solution of equation (11) must satisfy the condition

Pd1, 425915492, 1) = 6, — 4140(q2)0(41)0(q) for t - 0. (12)

The exact solution of equation (11) satisfying the initial condition (12) is not known.
However, if the energy supplied by the random forces is taken to be small compared to the
height of the potential barrier, the equation (11) can be approximately solved. Explicitly
stated, this condition is

D
*B « h,where h = V(q,5,428)— V(914,0)- (13)

Such an assumption will result in a motion of the phase trajectories, starting from the point
A, that is slow and almost stationary as explained in a previous paper by the authors [7].
Consequently, the relation time 7 for the probability flow in the phase space representing
the motion of the phase trajectories will be large. Further, if T « 1, the direction of this drift
near the region B will be principally towards C and the probability of snapping Pr evaluated
will then represent the probability that the arch snaps for the first time. Therefore, the
probability density valid in the neighbourhood of any point in the phase space will be that
corresponding to the stationary solution of the Fokker-Planck equation (11) with the
potential function V appropriate to the neighbourhood of that point. Thus, the probability
density in the neighbourhood of A will be the stationary solution of the equation (11) with
the antisymmetric deformation g, = 0 and is given by

P4 = 04 CXp {_%[’%‘ﬁ +3V11)ald:1— 41 4)° _h]} . (14)

Here, a, is a normalizing constant and (V,,), is the first non-vanishing term d?V/dg? in
the expansion of V(g,, gq,, 1) evaluated at the equilibrium point 4. The datum for the
potential function is chosen such that V = Q at the point B. The solution (14) s to be used to
calculate n, in the formula (10).

Consider those phase trajectories that have succeeded in surmounting the potential
barrier at the saddle point B under the shuttling action of the random force &(t). The pro-
jection of these trajectories on the g,—q, plane will be nearly parallel, around the point B,
to the projection of the line of downward curvature of the potential energy surface at B.
Let s, and s, denote the principal curvature coordinates of the potential energy surface and
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let s; correspond to the direction of downward curvature at the point B as indicated in
Fig. 3. The transformation law relating the s-system and the original g-system of coordinates
is

g, = s;cos0+s,sin 6,

g, = —s;sinf+s,cosb, (13)

where 6 is the angle of transformation. Let V* be the potential energy of the arch in terms
of the new variables s, and s,. V*(s,, 5,, 4)can be obtained from V(q,, ¢,, 4) usingequations
(15). An advantage of representing the potential function by V*(s,, s,, 4) is that, in the
expansion, the variations of ¥* occur uniquely with respect to each s, and s, direction and
the cross differential terms 6*V*/0s,ds; vanish for i # j, whereas this is not true if the
potential energy is written in terms of the original g-system of coordinates. Consequently, a
solution of the Fokker-Planck equation valid near the point B is made possible. Since the
cluster of random phase trajectories near the point B will be essentially directed along the
principal s,-direction towards the point C, the probability of snapping of the arch can be
determined from the expression (10) where jz now represents the rate of flux of the phase
points across the surface s, = s,z in the phase space. This can be evaluated from a solution
of the Fokker—Planck equation that is reformulated in terms of the s-coordinate system.

The equations of motion of the arch (5) as referred to the principal s, and s, coordinates
are

a *
5,488 +— 35, = {(t) cos b,
(16)
*
s2+ﬂsz+aaV = &(t) sin 6.
S2

The corresponding Fokker-Planck equations governing the marginal probability densities
p1(sq,$;) and py(s,, $,) valid in the neighbourhood of the saddle point B are

op, _ ov* dp, 6p Dcos20 op,

1
o = e a5, Ve, Pa ( B o) {17

0 ov* o .0
p2_ p2 p2+ﬁ

D sin%6 dp, (18)
ot s, 6s2 asz

B85,
where

51 =81—S1s §; = 53— S3p.

The flux rate jz across the surface s, = s;5 may then be obtained from the locally
stationary probability density p,(s,, §,) satisfying the equation (17). That is,

ja = f 5101615, $1) d51, (19)

and this may be used in the expression (10) to evaluate the probability distribution Pr.
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PROBABILITY OF SNAP-BUCKLING

Following the calculation procedure explained in the authors’ previous paper [9],
the quantities jz and n, may be determined and the probability of first snap-buckling of the
arch may be found as

T Vida 1H([B? g h
e E S ] el 5]

Here (V) is the quantity d’V/dgq? evaluated at q, = q,, and (V¥,) is the quantity

02V*/ds? evaluated at the saddle point B where s, = 5,5 and s, = s,5. These quantities

may be calculated from the potential energy expression (4). Introducing the nondimensional
parameters {, = q,/2r, {, = ¢,/2r and a = y,/2r, the expression (4) becomes

V(1,805 4) = 2Kr2I{(ad; — 301 —203)* + 301 +8(5 — AL, ] +const. 2y

On setting 0V/8(, = 0 and 0V/0(, = 0, the equilibrium positions {,, {5 and {; of the
arch are given by the roots of the following equations

-3+ Qo2 +403+ 1), ~dal3+ 1 =0,

45+ 20l +4), = 0.

For the stable equilibrium configurations 4 and C of the arch (see Fig. 2), the antisymmetric
deformation {, = 0 and on using the first of the equations (22)

*cos(”;*”),

(22)

a?—1

3
2__1 3
x 3 ) COSl//

Cia= “—2(

(23)

c_ 2 v
(i1c = o+ ( 3

where ¥ is the smallest positive angle satisfying

cos yy = (a—;—f)

a?—1\"%

3

The unstable equilibrium configuration B is given by a solution satisfying both the equations
in (22) and is found as

(i = ’}5(405—'1),
(o= %(2“513—6%8—4)%-

If the quantities given in equations (23) and (24) are to be real and distinct, the mean load 4
must be such that

(24)

a—3(2—4) < i < a+3a? —4). (25)

The expression (21) for the potential function must be multiplied by a factor 2/ml when it is
to be used in the equations of motion given in the form of equations (5). That is,

V(1,055 4) = 4oir’[(al, —503 —203)* +3(1 +8(3 — 4(,] +const,, (26)

where w, is the natural frequency of the arch for a zero initial curvature in its fundamental
mode {, after setting {, = 0 and is given by the quantity (K/m)?.
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The quantities (V; ), and (V%,)5 to be used in the formula (20) may now be calculated
from expressions (23), (24) and (26).

v d’v
( ll)A = Egevaluated at Cl = CIA and Cz = 0,

= w333 —6al; ,+2¢%+1). 27

* az v* .
(Vis = i evaluated at the point { = (%,
1

S
and (¥ = (g where (¥ = —.
2r
The latter quantity can be computed using a Mohr’s circle transformation corresponding

to equations (15). That is

( ll)B ( 22)8
V*) = (M11)s+(V22)s
( 11/8 2

where (V),)s, (V22)p and (Vy,)p are the quantities 82V/0¢2, 0°V/o(2 and 9*V/o(,0,
evaluated at the point {, = {,5 and {, = {,5. On using expressions (24) and (26) in (28),
(V'¥,)s may be written in the form

—H{{(Vi)s~—(V22)s)” +4(V12)3}3, (28)

(V1)s = 0i[L—(M?+ N2, 29
where
L= —=33p+6al,g+0a*—175,
M = 5{2,—100(, 5+ a2+ 14-5,
and

N =4[ {tp+4alip+(5e” —4)ip+ (20 +8a), p—~4a’].

Substituting expressions (27) and (29) in the formula (20), the probability of first snapping
of the arch in a time interval T'is

S [3C%A—6aC1A+2a2 + 1]*

T
Py = — cos?
T =58 T LT N

[{ _42.— [L—(M? +N2)*]w%}*—-§] exp( —%), (30)

where 6 is the angle of transformation given in equations (15) and can be obtained from the
relation

2(Vi2)s N
tan 20 = ———=—— = —,
Me—(Vaa)s M

which corresponds to the Mohr’s circle transformation indicated in expression (28).
The height h of the potential barrier is

h= V(ClB,CzB)—V(ClA,O)
= 40’%’2{4((%18-1)“%&3—(%,4(%"‘“—%C%A)—/I(Cw‘{u)"“}- (31)
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Introducing a non-dimensional damping coeflicient y and writing § = 2yw, , the expression
for P, takes the form

P _TCOSZO 3CfA—6OCC1A+2Ot2+l 3
T —L+(M?4+N??

T

(32)

{[* =L +(M?+ N1t —y} eXp( —zy?h)

where 1, is the period for the fundamental oscillation w, .

NUMERICAL RESULTS AND CONCLUSIONS

To illustrate the application of the formula (32), a model arch made of aluminum and
having a span of 24 in. and a cross-section }in. depth x 1in. width is considered. The
natural frequency w, of the model arch for zero curvature and in the symmetric {; mode is
evaluated to be 400 rad./sec. The intensity coefficient 2D of the stochastic load on the arch
is taken as 8w3r? units to be in agreement with the assumption (13) made in the analysis.
The probability of first snap-buckling is calculated for different values of the mean load 4
that satisfy the condition A, < 4 < i,,, Where A, and A_,, are the minimum and
maximum static critical loads of the arch specimen. The time T for the snapping is taken to be
48 cycles of the oscillation w, or 48 1, seconds, 7, being the period of w, .

Figure 4 presents the plot of the logarithm of the probability distribution Py against the
load ratio 1/A,,,, for different values of the damping factor y/y., where y, is the critical
damping in the {; mode. It may be noticed that the probability of snapping is highly
sensitive to changes in the mean load A and the damping factor y/y.. For example, when
v/y. = 0:60, a 6-5 per cent decrease in the ratio A/4,,, from a value of 0-80 decreases the
probability from 0-60 to 0-07. Similarly, when A/4,,, = 0-80, a 25 per cent decrease in the
damping factor y/y. from a value of 0-8 increases the probability of snapping from 0-11 to
0-60. Such large variations may be attributed to the presence of the term exponential
(—2yw.h/D) in the formula (32). Here, a small variationin A causes a large change in the
height h of the potential barrier and thereby influences a considerable change in the
magnitude of the ratio h/(D/2yw,) satisfying the assumption (13). The influence of the

o = 6.0

Log) Py

F1G. 4. Probability Py vs. load ratio A/4_,,.



Instability of stochastically loaded shallow arches in nonsymmetric modes 1315

A Ama M

0.4 0.5 0.6 0.7

L.
A 0.2
T = 48 cycles

F1G. 5. Probability Py vs. load ratio A/, .

initial curvature a on the probability of snapping is described by the graphs shown in Fig. 5.
As expected, it may be seen that, for the same value of the ratio A/4,,,, the probability P,
decreases for an increase in the initial height o.

The results presented in this paper are applicable to shallow arches that buckle under
symmetric and antisymmetric modes of deformation. It is known from static analyses [10]
of shallow arches that for such asymmetric snapping to occur the value of the initial
curvature parameter « must be greater than (5-5)* and therefore the investigation presented
here may be taken to be valid in that range of a. For values of « less than (5-5), the arch
exhibits only a symmetric mode of deformation and the antisymmetric mode is completely
absent. The behaviour of such arches subjected to stochastic loads has been presented in a
previous paper [7] and can also be treated as a special case of the results presented in this
paper. In such cases, on substituting the asymmetric deformation {, = 0, the formula (32)
for the probability reduces to the one obtained by the authors [7] previously.

It has been often reported that arches and shell structures of its kind, when experi-
mentally tested, always exhibit lower snapping loads than those predicted by the classical
theory. The results presented in this paper partly provide an answer to such discrepancies
because, besides geometrical imperfections, it may be the small random disturbances
(over and above the measured mean static load) caused by the testing machine that have
taken the specimen to an eventual snapping. The investigation presented has also an
application in the design of structural components of aerospace vehicles, especially in the
determination of their reliability against the random aerodynamic forces that are experienced
over the dead loads already carried.
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AGcrpakr—MUcecnenyercs  3agada  YCTOHYWBOCTH MOJOrMX, 3aLUEMIIEHHBIX, CHHYCOMOANbHBIX apok,
TIOABEPXKEHHBIX OEACTBHIO §€3MOPALOYHO NEPEMEHHON, CHMETPHYECKH PaCNONONEHHO!, FOPH3OHTATLHOR
Harpy3ku. HecMOTps Ha TO, YTo mehOPMALMA APKH CHAYAIA CHMMETPHYECKA, BHITYYMBAHKE HAMMHACTCS,
KOrla AHTHCUMMETDHYECKHH BMA BLIMYYHBAHMS MOMBIAETCA MPH HEKOTOPOM KPUTHYECKOM 3HAYEHHIO
Harpy3KH.

Ha ocHOBe aHamn3a, BoiBEACKHOTO palbiue ABTOPAMH [UTA Cy4aeB aHTHCHMMETPHYECKOIO BHE3AMHOTO
BBINYYUBAHMA, TIPUMEHAEMOTO 1A 3a1a4H 060T0YKH, ONPEAEASIOTCH AHATUTHYECKHE GOPMYNBL AN4 pacyeTa
BEPOATHOCTH 11€PA0ro MPOLIENKHBAHUS, B CMEUU(UUECKOM HHTEPRAJC BPEMEHH, OT HAYAIBHOIO YCTONYH-

BOTO COCTOSIHMA paBHoBecusa. JlaioTcsi 1 oOGCYXKIOAIOTCH MUCIEHHBIE PE3yNbTaThl A1 4aCTHOTO MPHMEPA
ofpasua apku.



